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Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain

e-mail: Publio.Pintado@uclm.es

Keywords: Biomechanics, Smoothing, Filtering, Differentiation, Inverse dynamic analysis.

Abstract. The application of Singular Spectrum Analysis (SSA) to the smoothing of raw kine-
matic signals represents an alternative to the use of traditional digital filtering and spline based
methods. SSA is a non-parametric technique that decomposes original time series into a number
of additive time series each of which can be easily identified as being part of the noise present
in the acquired signal. Nevertheless, the smoothing automation is not a trivial task. This work
presents an heuristic automatic smoothing procedure for processing kinematic biomechanical
signals based in sequential SSA. Cluster analysis is used to group the SSA decomposition in
order to obtain several independent components in the frequency domain. The procedure elim-
inates iteratively the noise present in the signal in a simple and intuitive way. The procedure is
applied to a non-stationary signal to demonstrate its performance.
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1 INTRODUCTION

Motion capture systems introduce noise into marker trajectories. Raw displacement signals
must be filtered or smoothed prior to differentiation to avoid noise amplification of ill-posed
derivative estimation process.

The filtering of displacement signals to obtain noiseless velocities and accelerations has been
extensively treated in the literature. Traditional filtering techniques include Digital Butterworth
filters, splines, and filters based on spectral analysis [1-3]. In order to filter nonstationary sig-
nals, advanced filtering techniques like Discrete Wavelet Transforms [4], the Wigner Function
[5] and Singular Spectrum Analysis (SSA) [6] have been used. Nonetheless, the drawback in
these cases is the complexity of devising an automatic and systematic procedure. A mother
wavelet function must be selected when using Discrete Wavelet Transforms, the filtering func-
tion parameters must be chosen when using the Wigner Function, window length and grouping
strategy must be selected when using SSA.

The goal of this paper is to demonstrate the advantages of smoothing methods based on
Singular Spectrum Analysis (SSA) and cluster analysis techniques. SSA is a non-parametric
technique that decomposes original time series into a number of additive time series each of
which can be easily identified as being part of the noise present in the acquired signal. This work
presents an heuristic automatic smoothing procedure for processing kinematic biomechanical
signals based on sequential SSA. Cluster analysis is used to group the SSA decomposition
in order to obtain several independent components in the frequency domain. The procedure
eliminates iteratively the noise present in the signal in a simple and intuitive way.

2 SINGULAR SPECTRUM ANALYSIS

Singular spectrum analysis is a novel non-parametric technique of time series analysis based
on principles of multivariate statistics. It decomposes a given time series into an additive set of
independent time series. The set of series resulting from the decomposition can be interpreted
as consisting of a trend representing the signal mean at each instant, a set of periodic series, and
an aperiodic noise [7]. The original application of SSA was to extract trends from climatic and
geophysical time series and to identify periodic motion in complex dynamical systems.

The SSA method builds a Hankel matrix, called the trajectory matrix, from the original time
series in a process called embedding. This matrix consists of vectors obtained by means of a
sliding window that traverses the series. The trajectory matrix is then subjected to a singular
value decomposition (SVD). The SVD decomposes the trajectory matrix into a sum of unit-
rank matrices known as elementary matrices. Each of these matrices can be transformed into a
reconstructed time series. Elementary matrices are no longer Hankel matrices, but an approxi-
mate time series may be recovered by taking the average of the diagonals (diagonal averaging).
The resulting time series are called principal components [7]. The sum of all the principal
components is equal to the original time series.

The objective is to obtain a frequency decomposition of the original signal in which the latent
low-frequency signal can be detected in a simple fashion. The SSA decomposition algorithm
will be described in the following. A more detailed explanation may be found in Golyandina et
al. [7].

The above description of SSA may be expressed in formal terms as follows:
Step 1. Embedding
Let F = (f0, f1, . . . , fN−1) be the length N time series representing the original signal. Let L

be the window length, with 1 < L < N and L an integer. Each column Xj of the Hankel matrix
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corresponds to the ”snapshot” taken by the sliding window: Xj = (fj−1, fj, . . . , fj+L−2)
T , j =

1, 2, . . . , K, where K = N − L + 1 is the number of columns, i.e., the number of different
possible positions of the said window. The matrix X = [X1,X2, . . . ,XK ] is a Hankel matrix
since all elements on the diagonal i+j = constant are equal. This matrix is sometimes referred
to as the trajectory matrix. The form of this matrix is:

X =




f0 f1 f2 . . . fN−L

f1 f2 f3 . . . fN−L+1
...

...
... . . . ...

fL−2 fL−3 fL−4 . . . fN−1

fL−1 fL−2 fL−3 . . . fN




(1)

Step 2. Singular value decomposition (SVD) of the trajectory matrix.
It can be proven that the trajectory matrix (or any matrix, for that matter) may be expressed

as the summation of d rank-one elementary matrices X = E1 + . . . + Ed, where d is the
number of non-zero eigenvalues of the L × L matrix S = X · XT. The elementary matrices
are given by Ei =

√
λiUiV

T
i , (i = 1, . . . , d), where λ1, . . . , λd are the non-zero eigenvalues of

S in decreasing order, U1, . . . ,Ud are the corresponding eigenvectors, and the vectors Vi are
obtained from Vi = XT ·Ui/

√
λi, i = 1, . . . , d.

The norm of elementary matrix Ei equals
√

λi, so that, the contribution of the first matrices
to the norm of X is much higher than the contribution of the last matrices. Therefore, it is likely
that these last matrices represent noise in the signal. The plot of the eigenvalues in decreasing
order is called the singular spectrum, and gives the method its name.

Step 3. Reconstruction (diagonal averaging)
At this step, each elementary matrix Ei is transformed into a principal component of length

N by applying a linear transformation known as diagonal averaging or Hankelization. The
elementary matrices are not themselves Hankel matrices, so that to reconstruct each principal
component one calculates the average along the diagonals i + j = constant. The diagonal
averaging algorithm [7] is as follows:

Let Y be any of the elementary matrices Ei of dimension L×K, the elements of which are
yij , 1 ≤ i ≤ L, 1 ≤ j ≤ K. The time series g0, . . . , gN−1 (principal component) corresponding
to this elementary matrix is given by:

gk =





1

k + 1

k+1∑

m=1

ym,k−m+2 for 0 ≤ k < L∗ − 1

1

L∗

L∗∑

m=1

ym,k−m+2 for L∗ − 1 ≤ k < K∗

1

N − k

N−K∗+1∑

m=k−K∗+2

ym,k−m+2 for K∗ ≤ k < N

(2)

where L∗ = min(L,K), and K∗ = max(L,K).
It can be shown that the squared norm of each elementary matrix equals the corresponding

eigenvalue, and that the squared norm of the trajectory matrix is the sum of the squared norms

of the elementary matrices [7]. Thus the ratio λi/
d∑

i=1

λi represents the contribution of the el-

ementary matrix Ei in the expansion of the trajectory matrix X = E1 + E2 + · · · + Ed. The
largest eigenvalues in the singular spectrum represent the large amplitude components in the
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decomposition. Contrariwise, the low–amplitude components of the signal are represented in
the singular spectrum by the smallest eigenvalues.

2.1 Separability

The SSA decomposition obtained is a function of the window length choice. This choice
therefore conditions whether the components obtained will be correlated to a greater or lesser
degree in the frequency domain. To study whether these components are mutually independent,
one defines the following necessary (but not sufficient) separability condition [7]:

Two principal components F1 and F2 obtained from the elementary matrices E1 and E2 are
separable (w-orthogonal) if the inner product of series F1 and F2 is null, i.e.,

(F1,F2)ω =
N−1∑

i=0

ωif
1
i f 2

i = 0 (3)

where the weights ωi are defined by

ωi =





i + 1 for 0 ≤ i ≤ L∗ − 1
L∗ for L∗ ≤ i < K∗

N − i for K∗ ≤ i ≤ N − 1
(4)

and L∗ = min(L,K), and K∗ = max(L,K).
If the original series F is decomposed using SSA into a sum of separable components

F1, . . . ,FL that match equation (3) then this sum can be interpreted as an expansion of the
original signal F with respect to a certain w-orthogonal basis generated by the original series
itself [7]. The weights in the inner product have the form of a trapezium and reduce the influ-
ence of data close to the end-points of the components with respect to the central terms in the
series, particulary for large window lengths.

Real-life signals do not match equation (3). In practice, one speaks only about approximate
separability. To quantify the quality of separation between two components, one defines the
weighted correlation or w-correlation of two components F1 and F2:

ρω
12 =

(F1,F2)ω

||F 1||ω||F 1||ω =

∑N−1
i=0 ωif

1
i f 2

i√∑N−1
i=0 ωif 1

i f 1
i

√∑N−1
i=0 ωif 2

i f 2
i

(5)

This coefficient is a measure of the deviation of two series F1 and F2 from w-orthogonality.
If the absolute value of the w-correlation is near zero, then the two series are separable. If it is
large (near 1), the two components are badly separable.

It is desirable to obtain a decomposition such that the principal components are mutually
independent in order to extract the noise present in the displacement signal.

Figure 1 shows the SSA decomposition of a displacement signal (described in the results sec-
tion) using a window length L = 10. Figure 1 shows the decomposition obtained together with
the original signal (see figure caption for details). Figure 1(b) shows a graphical representation
of the w-correlation matrix corresponding to the decomposition obtained. Cell ij represents the
correlation between components i and j, gray-scale coded from black for ρω

ij = 0 to white for
ρω

ij = 1

3 CLUSTER ANALYSIS

As was discussed above, the statistical independence of the principal components depends
on the size of the window length chosen. With large values (L ≥ 15), while the separation is
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Figure 1: (a) Singular spectrum. (b) w-correlation matrix. (c) Original time series and principal components
obtained in the time domain (d).

good, the number of principal components obtained for the representation of the trend signal
is impractically large. In order to reduce the number of principal components with which to
extract the trend signal and ensure their statistical independence, we apply a cluster analysis
procedure.

Namely, we perform k-means clustering on the w-correlation matrix in order to obtain k
groups of independent components. The k-means algorithm classifies a given data set through
a certain number k of clusters fixed a priori [8]. The main idea is to define k centroids, one for
each cluster. Since different locations of these centroids cause different results, the best choice
is to place them as far as possible from each other. The next step is to take each point belonging
to a given data set and associate it to the nearest centroid. When no point is left, the first step
is completed and a putative grouping is made. At this point, one needs to re-calculate k new
centroids as barycenters of the clusters resulting from the previous step. After one has these k
new centroids, a new binding procedure has to be carried out between the same data set points
and the nearest new centroid. A loop has thus been generated. As a result of this loop, the k
centroids change their location step by step until no more changes are made, i.e., the centroids
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do not move any more. Finally, the algorithm aims at minimizing an objective function, in this
case the following squared error function:

J =
k∑

j=1

n∑

i=1

||x(j)
i − cj||2 (6)

where ||x(j)
i − cj||2, a distance measure between a data point x

(j)
i and the cluster centre cj , is

an indicator of the distance of the n data points from their respective cluster centres .
This simple version of the k-means procedure can be viewed as a greedy algorithm for par-

titioning the n samples into k clusters so as to minimize the sum of the squared distances to
the cluster centres. Unfortunately there is no general theoretical solution to find the optimal
number of clusters for any given data set. A simple and systematic heuristic approach to obtain
an optimal number of clusters is to compare the obtained error function (Eq. 6) of multiples
runs with different k classes and chose the number of clusters that minimize this function.

4 RESULTS

A non-stationary kinematic signal was smoothed using the methods described in the previous
section. A double differentiation is performed on the signal in order to quantify the effect of
smoothing. First order central finite differences are used to calculate the higher derivatives.

A vertical slider was moved by hand to obtain a non–stationary mono–dimensional motion
of biomechanical origin. A subject was asked to move the slider randomly with fast upward and
downward movements. The vertical position (Fig. 2) was acquired with the use of a marker at-
tached to the slider and the Qualisys camera system (Qualisys Medical AB). The second deriva-
tive of this record, or of the record obtained after smoothing, are compared to the acceleration
obtained directly from an accelerometer attached to the slider. Displacement and acceleration
were sampled at 200 Hz during 5.90 seconds, obtaining records of 1182 elements each.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 

Figure 2: (a) Experimental layout. (b). Noisy vertical displacement signal acquired. The second derivative of
this record, or of the record obtained after smoothing, is compared to the acceleration obtained directly from
an accelerometer attached to the slider. Displacement and acceleration were sampled at 200 Hz during 5.90 s,
obtaining records of 1182 elements each.

SSA decomposition was attained using a window length L = 10 (see Fig. 1). Various win-
dow lengths were tested in order to study the influence of this parameter on the decomposition.
Figure 3 shows the results using L = 5, L = 20, L = 50 and L = 100. We observed that the
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smaller window lengths do not adequately separate the high and low frequency components.
The greater window lengths, however, yield a good separation of the high and low frequencies. 
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Figure 3: w-correlation matrices. (a) L = 5. (b) L = 20. (c) L = 50. (d) L = 100.

After the SSA decomposition, a 4-means cluster analysis was performed in order to obtain
four frequency independent components for each vibration signal. The principal components
forming the low-frequency signal are I1 = [1, 2, 3]. It is important to stress that four components
would also have obtained using a window length of L = 4 in a SSA decomposition of the
original series, but without performing the cluster analysis, these four components would not,
however, have been independent in frequency, which is the fundamental point of this smoothing
method.

In order to eliminate the noise present in the obtained reconstruction sequential SSA-cluster
analysis was applied (L = 10). Such a recursive SSA application produces a gradual elimina-
tion of the noise present in the reconstructed signal. Figure 4 shows the results obtained for two
iterations of the method. The smoothed signal was numerically differentiated twice to produce
acceleration records to be compared to the accelerometer output (Fig. 4c). The original dis-
placement signal was also passed through a second-order Butterworth filter with a 4 Hz cut-off
frequency, and the result was differentiated twice using first-order finite differences to obtain
acceleration (Fig. 4b). Figure 4a shows the acceleration obtained from the raw data along with
the measured acceleration.

Comparison with traditional and advanced filtering techniques is quantified by taking the
root mean square of the error signal (RMSE) of the acceleration. The error signal is the dif-
ference between the measured reference signal (accelerometer) and the signal obtained after
filtering and differentiating the raw data. The errors in terms of RMSE are 29.54 m/s2 for the
Butterworth filter and 1.82 m/s2 using SSA-cluster analysis respectively.
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Figure 4: (a) Acceleration calculated from original raw displacement data (dotted line) and acceleration measured
by the accelerometer (continuous line). (b) Acceleration calculated after having been passed through a 4 Hz cut-
off frequency Butterworth filter (dotted line) and acceleration measured by the accelerometer (continuous line).
(c) Acceleration calculated after smoothing the raw displacement signal using sequential SSA-cluster analysis
(L = 10) and acceleration measured by the accelerometer (continuous line).

Table 1 summarizes the results obtained using several window lengths. It can be concluded
that the results are robust to variations of the window length L and number of clusters.

L RMSE N. iterations
10 1.82 2
50 1.51 3
100 1.52 2

Table 1: Summary of the results for several widow lengths.

5 CONCLUSIONS

The present work has studied the applicability of the SSA method and cluster analysis to
automatic smoothing of biomechanical kinematic signals.

The SSA algorithm decomposes the original signal into independent additive components of
decreasing weight. This fact allows the method to successfully extract the latent trend in the
signal from the random noise inherent to the motion capture system. An automatic heuristic
procedure based in sequential SSA and cluster analysis to extract the trend signal has been
presented. The method does not use any information from the reference acceleration signal

8



F. J. Alonso, D. R. Salgado, J. Cuadrado and P. Pintado

(which is not available in practice) to perform the smoothing. One of the main advantages to
the method is the fact that the algorithm requires the selection of just one parameter. Namely,
the window length L, nevertheless, the results are robust to variations of the window length.
In conclusion, we believe that this new automatic smoothing technique, that has proven its
effectiveness with complex signals, will help to improve the accuracy of raw kinematic data
processing in biomechanical analysis.
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