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EXTENDED ABSTRACT

1 Introduction

Joint clearances cause vibration and impacts in mechanical systems, decreasing machine efficiency and causing heat, noise, and
additional wear. Clearances can eventually cause damage to components and lead to premature system failure. The monitoring
and characterization of this defect are necessary tools in machine maintenance. Often, these tasks need to be performed using data
from a reduced set of sensors, which is usually limited because industrial machinery does not include extensive sensor arrays.

This work explores the use of neural networks for estimating the clearance radius using the data gathered through a pair of
accelerometers. The mechanism under study is the slider-crank linkage depicted in Figure 1, moving under gravity effects. In
order to train the neural network, a multibody model of the slider-crank is developed. This model includes a clearance at joint A,
which is modeled following the contact model described in [3], and a pair of accelerometers in the center of the crank, measuring
the acceleration in the longitudinal and perpendicular directions of the crank. Varying the radius of the clearance and the initial
velocity of the mechanism, 3 different datasets were generated, corresponding to initial velocities of 0 rpm, 250 rpm and 500
rpm. Each dataset is divided into training, validation and testing with proportions of 70%, 15% and 15% respectively.

A

B

C

g

sensor

Figure 1: Slider-crank model employed in this work with a pair of accelerometers as sensor.

The architecture of the model is based on a Long Short-Term Memory (LSTM) network [4], selected for its ability to handle
sequential data and model long-range dependencies. The input to the network consists of time series sequences with time steps
of 100 and 50 features, including generalized coordinates and angular data represented as sine and cosine values. The model
includes a single LSTM layer with 64 hidden units, configured to only output the final time step, summarizing the sequence
into a compact representation. This is followed by a fully connected layer with a single neuron, which maps the final time step
to a regression output that represents the clearance size. To constrain the output within a specific range, the sigmoid activation
function is applied. The model is trained using Mean Absolute Error (MAE) [5] as the loss function, a batch size of 64 and a
learning rate of 0.001, optimized with the Adam algorithm[6].

Several tests were conducted on three different datasets, each characterized by varying initial velocities. The results demonstrate
that the model performed better on datasets with higher initial velocities. As shown in Figure 2, the model’s performance is
illustrated after training on a dataset with an initial velocity of 500 rpm. The graph clearly highlights the predicted values,
represented by a blue line, where each data point corresponds to a sample sequence. This visualization not only shows the close
alignment between the actual values (represented by the red line) and the predicted values, but also emphasizes the model’s ability
to accurately capture the underlying patterns within the data.
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Figure 2: Model predictions on test set with an initial velocity of 500 rpm.
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