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Linear oscillator

This document describes a classical benchmark in the co-simulation literature: a two degree-of-

freedom linear oscillator.

Contact Francisco González (f.gonzalez@udc.es) if you have questions or comments about this

example.

1 Problem description

This problem consists in a two-degree-of-freedom linear oscillator, shown in Fig. 1, composed

by two masses m1 and m2 connected to each other and to the ground by means of linear springs

and dampers. Variables x1 and x2 measure the displacement of each mass with respect to its

equilibrium position, in which all the spring forces are zero. The initial position and velocity of

each mass are denoted by xi,0 and ẋi,0, respectively, with i = 1, 2. Similar systems have been

employed as benchmark problems in the co-simulation literature, e.g., [1, 2, 3, 4, 5].
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Figure 1: A two-degree-of-freedom linear oscillator

The linear oscillator problem has a known analytical solution.

1.1 Physical properties

Different values of the system parameters can be selected to represent a wide range of mechan-

ical systems. Table 1 shows the combinations of parameters used for this benchmark problem in

particular.
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Benchmark problem

m1 m2 k1 kc k2 c1 cc c2 x1,0 x2,0 ẋ1,0 ẋ2,0

Case (kg) (kg) (N/m) (N/m) (N/m) (Ns/m) (Ns/m) (Ns/m) (m) (m) (m/s) (m/s)

1 1 1 10 100 1000 0 0 0 0 0 100 -100

2 1 1 10 100 1000 0.01 0.01 0.01 0 0 100 -100

Table 1: Combinations of system parameters used in this problem

1.2 Dynamics equations

The oscillator dynamics is described by two ordinary differential equations (ODE) that can be

expressed in terms of the mass positions x = [x1, x2]
T and their derivatives with respect to time

as

Mẍ+Cẋ+Kx = f (1)

where

M =

 m1 0

0 m2

 ; C =

 c1 + cc −cc

−cc c2 + cc



K =

 k1 + kc −kc

−kc k2 + kc

 ; f =

 f1

f2


(2)

If the external forces f are zero, an analytical solution of the dynamics equations (1) can be

found reordering them into the form

ż = Az (3)

where

z =

[
x1 x2 ẋ1 ẋ2

]T
(4)

A =



0 0 1 0

0 0 0 1

− (k1 + kc) /m1 kc/m1 − (c1 + cc) /m1 cc/m1

kc/m2 − (k2 + kc) /m2 cc/m2 − (c2 + cc) /m2


(5)
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Linear oscillator

The analytical solution to Eq. (3) has the form

z (t) = eA (t− t0) · z0 (6)

The linear oscillator can also be simulated using a monolithic approach solving the initial

value problem defined by Eq. (1) and the starting system configuration and velocity. A possibility

is using the semi-implicit forward Euler formula as numerical integrator

ẋk+1 = ẋk + hẍk ; xk+1 = xk + hẋk+1 (7)

where h is the integration step-size.

2 Subsystem definition

The oscillator can be decomposed into two subsystems, each of them taking care of the simu-

lation of the dynamics of one of the point masses. Afterwards, co-simulation can be performed

according to many different coupling schemes, e.g., Jacobi and Gauss-Seidel configurations, ei-

ther explicit or implicit, both in single-rate and multi-rate communication grids. The following

selections of coupling variables are put forward for the definition of this benchmark example:

• Force-displacement coupling (f-s)

• Displacement-displacement coupling (s-s)

• Force-force coupling (f-f)

The selection of coupling variables determines subsystem definition, as shown next.

2.1 Force-displacement co-simulation

A first option is dividing the oscillator into two subsystems as shown in Fig. 2. Subsystem M1

integrates the dynamics of the first mass and passes the coupling force f c as output to subsystem

M2, which takes care of the second mass and, in turn, delivers its position as output, ξc.
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Benchmark problem
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Figure 2: The linear oscillator arranged following a force-displacement coupling scheme

In principle, f c1 6= f c2 and ξc1 6= ξc2 because input extrapolation or other adjustments can

be performed by the co-simulation manager. Each subsystem has its own internal integration

step-size, h1 and h2; the macro step-sizes with which each subsystem communicates with the

co-simulation manager are H1 and H2 and do not need to be the same either.

In this configuration, subsystem M1 has direct feed-through, because the evaluation of its

output – the coupling force f c– requires the availability of input ξc at any given instant in time

f c = kc (x1 − ξc) + cc

(
ẋ1 − ξ̇c

)
(8)

The derivative ξ̇c can either be directly passed by the second subsystem as part of its output, or

evaluated via numerical differentiation of ξc.

2.2 Displacement-displacement co-simulation

Another possibility is having both subsystems send their position (ξ and η) as output to the co-

simulation manager, as in Fig. 3. In this case, both subsystems need access to the information

about the coupling stiffness and damping parameters, kc and cc.

In this co-simulation configuration, none of the subsystems has direct feed-through. Subsys-

tem output is part of the state in both cases and can be evaluated without knowledge of the

input at any time. Accordingly, input extrapolation is not necessary with this configuration.
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Figure 3: The linear oscillator arranged following a displacement-displacement coupling scheme

2.3 Force-force co-simulation

It is also possible to perform the evaluation of the coupling force outside the subsystems, for

instance in the co-simulation manager. In this case, the subsystems would provide information

about their position and velocity to the manager, and would receive the coupling force as input,

as shown in Fig. 4.
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Figure 4: The linear oscillator arranged following a force-force coupling scheme

In this case, the information about the stiffness and damping properties of the coupling inter-

face must be available to the co-simulation manager. The scheme is similar to the displacement-

displacement one, in the sense that the subsystems are free from direct feed-through. In fact,

for single-rate co-simulation schemes, both coupling approaches are equivalent. The need to

perform input extrapolation in the multi-rate case introduces differences between their results,

though.
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Benchmark problem

3 Simulation

A 10-s simulation of the system motion, starting from the initial configuration and velocity, in

the absence of externally applied forces, is the simulation considered in the definition of this

benchmark problem.

For case 1 in Table 1 the system is conservative, and so its mechanical energy should remain

constant during motion.
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